- Experience: masters in Sustainable Energy Futures from Imperial College in 2007/8 - Thesis A Financial Accounting based model of Carbon Footprinting using an example in the Built Environment ### CO₂ AND OTHER GREEN HOUSE GASES - GGH's absorb infrared radiation from earth and re-radiate it in all directions - Many, many GHG's aggregated in terms of CO₂e | | Impact over 100yrs | Impact over 20 yrs | |----------------|--------------------|--------------------| | Carbon Dioxide | I | I | | Methane | 28 | 80 | | Nitrous Oxide | 270 | similar | Methane lasts about 10yrs in atmosphere whereas Nitrous Oxide lasts over 100 yrs hence difference in impact https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/greenhouse-gas-data-unfccc/global-warming-potentials chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential- Values%20%28Feb%2016%202016%29_1.pdf chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fluorocarbons.org/wpcontent/uploads/2020/07/2021-10-08-Learn-About_Selecting-and-Using-GWP-values-for-Refrigerants.pdf - ---Scientific models excluding human impacts implies no change in global temperature - ---Models including human impacts maps well onto actual temperature change ---There is a link between CO2 emissions and GDP/ Capita ie increased personal wealth leads to greater carbon emissions --- UK looks OK with low emissions relative to similar wealthy nations **BUT** - -No as good as it seems - -Although UK in 1990 emitted 10t/person but now 5t/person - -UK has increased its imported emissions from 10% in 1990 to 40% equivalent to about 7t/person. (Note that per capita emissions are similar now to those in 1870 when we used a lot of coal for power) - -The world currently emits about 48.9bt CO2e (CO2: 35bt/ Methane 8bt/ N2O 3bt etc) - -The UK emits about 342mt of CO2 (less than 1% of global emissions) or 424mt CO2e - --- UK not alone in importing CO2 which includes most of Europe and the USA - ---China/ Australia/ Canada big exporters: China because of manufacturing, Aus and Can because of hydrocarbon exports - ---Big messages: - ---3\4 of emissions are from energy use and 18% land use - ---Personal emissions as part of the pie <12% transport 11% Residential buildings <6% Livestock - ---The other 70% we get from purchase of goods and services including "government" emissions - ---Data from Climate Watch 2016 data - ---Who is responsible and where to start - ---Measure first using - -----Carbon footprint in terms of tones of CO2e or - -----Environmental footprint/ Ecological footprint in terms of Worlds (Definition of Worlds: How many Earths do we need if everybody on the planet lived like you) # BUT IF WE WANT TO GET TO NET ZERO:WHAT DO WE HAVE TO DO Energy Transport Heating and cooling New goods New buildings Food Diet - ---Remember 30% personal running costs - ---70% purchases of goods and services - ---Nevertheless: - -----Reduce use of energy and delay or refuse purchase of embedded carbon - -----Change diet Three footprint calculators follow ### Includes: Diet and food Travel and offsets House size, heating, insulation etc Stuff eg Clothing, pets and recycling ### Output Footprint relative to others in the UK people Breakdown of CO2 budget Need more info to complete such as Kwh on heating and electricity Type of car and miles Spend on food, clothes, pubs and cars A better indicator But, more cluncky Output is the Environmental footprint or Ecological footprint ### American orientated Does not include large purchases 1 World = approximately 1.6-2.2T Co2 ### **SO WHAT** - All have benefits and issues - More data means - More accuracy - Likely greater footprint - Calculating a footprint is very difficult as the world is very complex - Can be designed to make you feel guilty - Don't necessarily say what to do - ---30%v running costs 70% purchases - ---Cars embedded carbon cost either in proportion to their cost (720kg CO2e/ £1000) or to their weight 10T CO2/ Tonne of car - ---Electric cars are currently heavier and more costly than conventional cars for the same type of vehicle therefore more carbon intensive - ---Grid electricity equates to 50gCO2/ km - ---So it can take 50,000 to 70,000 miles for an electric car to break even with a conventional car depending on the comparison - --- A 400m2 office block (think a large house) uses about 172T of CO2 to build. This is the same as a good diesel car emitting about 130gCO2/km driving 33 times round the world - ---Retrofitting a house would not need nearly as much carbon (which is mainly in the concrete foundations, steel and glass) - -----would likely get the majority of the insulation and heating benefits - -----meaning breakeven would take several decades if not a century depending on assumption and changes to electric grid intensity or replacing natural gas with hydrogen. ## POSITIVES Better to know than not Knowledge empowers you to make decisions It could save you money Chart shows the cost of making change from saving money on left to costing money on right Eg on left LED light bulbs Better heating systems Insulation **RHS** Carbon capture and Storage Solar PV but even this is positive now with cheaper panels ### WHAT CAN YOU DO PART I Keep your car longer Retrofit your house: don't build/ rebuild Where you can: insulate and use PV and Air/ Ground source heat pumps Travel less/ more slowly Eat less meat (better quality?) Modify, maintain and reuse https://www.tree hugger.com/the-carbon-footprint-of-a-renovation-vs-new-construction-4857500 We are talking about future of humankind on the planet (ref James Lovelock and GAIA) Government and world policy must change so that capital is driven away from fossil fuels to renewables and reduced purchase of embedded carbon Ensure that anyone from parish council to MP's have robust green policies ### OFFSETS AND GREEN ENERGY - Offsets - Are they a good thing? - Or just a way to allow Business as Usual and avoid making difficult decisions? - The Integrity Council for the Voluntary Carbon Market - Voluntary Carbon Markets Integrity Initiative - · Green energy tariffs - What do they achieve? REGOS Renewable energy guarantee of origin certificates: may be used to double count green electricity Is your green energy supplier building more renewables because it is this that is going to drive change Two new standards being launched at the end of the year ICVCM <u>ICVCM - Build integrity and scale will follow The Integrity Council for the Voluntary Carbonmarket:</u> focuses on the integrity of the supply side, and was set up by Mark Carney and Bill Winters (CEO of Standard Chartered). VCMI <u>VCMI - Accelerating credible net-zero climate action (vcmintegrity.org) Volunatry carbon Markets Integrity Initiative:</u> set up at COP last year, under guidance of the UK government, and sets out best practice for offset buyers. Both entities expect to publish final guides by year end. ### CONCLUSION - Keep your eye on what matters - Watch the 70% and be an advocate to ensure policies align with the future of humankind. - Personal Policy - Reduce energy use (at home and whilst traveling as well as purchases especially big items) - Reuse stuff or give it to someone who will use it - Repair stuff (find someone who can if you can't) - Recycle where you can't do any of the above Reduce/ Refuse (use less energy by insulating, traveling less/ buy less often and don't be tempted by consumerism) Reuse (how can you reuse "stuff") Repair (rather than throw it way, can it be repaired: includes houses and cars) Recycle take advantage of facilities/ could be recycling bins or home compost bins)